Type Theory
(the very basics)
What is Type Theory?
What is Type Theory?

Type Theory is a logic.
What is Type Theory?

[1971]
Per Martin-Löf

Type Theory is a logic.
What is Type Theory?

[1971]
Per Martin-Löf

Type Theory is a logic.

- but, being based on λ-calculus, is bares close similarity to programming languages.
Type Theory is a Logic

• As a logic, it is interested in making judgements of the form:

 ▶ A is a set
 ▶ \(A_1 \) and \(A_2 \) are equal sets
 ▶ \(a \) is in an element of set \(A \)
 ▶ \(a_1 \) and \(a_2 \) are equal elements in \(A \)
Judgement Forms

• To know that A is a set is to know how to form the canonical elements in the set and under what conditions two canonical elements are equal.
Judgement Forms

• To know that A is a set is to know how to form the canonical elements in the set and under what conditions two canonical elements are equal.

Set of natural numbers

\[
\begin{aligned}
data \text{ nat} & \triangleq \\
0 & : \text{ nat} \\
S : \text{ nat} & \rightarrow \text{ nat}
\end{aligned}
\]

\[
\begin{aligned}
0 \\
1 & \triangleq S \ 0 \\
2 & \triangleq S \ (S \ 0) \\
3 & \triangleq S \ (S \ (S \ 0)) \\
& \vdots
\end{aligned}
\]
Judgement Forms

• To know that A is a set is to know how to form the canonical elements in the set and under what conditions two canonical elements are equal.

Set of natural numbers

\begin{align*}
\textbf{data} \ & \text{nat} \triangleq \\
0 : \text{nat} \\
S : \text{nat} \rightarrow \text{nat}
\end{align*}

\begin{align*}
0 \\
1 & \triangleq S 0 \\
2 & \triangleq S (S 0) \\
3 & \triangleq S (S (S 0)) \\
\vdots
\end{align*}

(Polymorphic) set of lists

\begin{align*}
\textbf{data} \ & \text{List E} \triangleq \\
\text{Nil : List E} \\
\text{Cons : E} \rightarrow \text{List E} \rightarrow \text{List E}
\end{align*}

\begin{align*}
[] & \triangleq \text{Nil} \\
[a_1] & \triangleq \text{Cons a}_1 \text{ Nil} \\
[a_1, a_2] & \triangleq \text{Cons a}_1 (\text{Cons a}_2 \text{ Nil}) \\
[a_1, a_2, a_3] & \triangleq \text{Cons a}_1 (\text{Cons a}_2 (\text{Cons a}_3 \text{ Nil})) \\
\vdots
\end{align*}
Judgement Forms

• If A is a set then to know that \(a \in A \) is to know that a, when evaluated, yields a canonical element in A as value.
Judgement Forms

• If A is a set then to know that $a \in A$ is to know that a, when evaluated, yields a canonical element in A as value.

\[
\text{(fix } \lambda h \ n. \ \text{match } n \ \text{with}} \\
\quad \quad \quad \quad 0 \Rightarrow \text{Nil} \\
\quad \quad \quad S \ k \Rightarrow \text{Cons } n \ (h \ k) \ \text{)} \ 8 \ : \ \text{List } \text{nat}
\]
Judgement Forms

• If A is a set then to know that \(a \in A \) is to know that a, when evaluated, yields a canonical element in A as value.

\[
\text{(fix } \lambda h \ n. \ \text{match } n \ \text{with} \\
0 \Rightarrow \text{Nil} \\
S \ k \Rightarrow \text{Cons } n \ (h \ k) \) \ 8 \ : \ \text{List nat}
\]

› We know this from our typing rules and from properties of the type system (progress & preservation)
Judgement Forms

• Quite unsurprisingly then,

 ▶ *Sets* are characterized by *types*,

 ▶ *Membership* is characterized by *typing rules*.
Propositions in Type Theory

- Propositions are **types**.
 - A member of the type represents a **proof** of the proposition.
 (sometimes called a **witness**.)

\[
\text{t : } 3 > 2 \quad \text{t is a proof that } 3 > 2 \text{ is valid.}
\]
Propositions in Type Theory

• Propositions are **types**.
 - A member of the type represents a **proof** of the proposition.
 (sometimes called a **witness**.)

\[
t : 3 > 2
\]

\(t \) is a **proof** that \(3 > 2 \) is valid.
Propositions in Type Theory

- Propositions are **types**.
 - A member of the type represents a **proof** of the proposition.
 (Sometimes called a **witness**.)

\[
\begin{align*}
 t & : 3 > 2 \\
 3 > 2 & : \mathbb{P}
\end{align*}
\]

- Propositions have a special type called **Prop**, or \(\mathbb{P} \).
Propositional Logic

Logical True

Logical False

traditional logic

type theory
Propositional Logic

Logical $True$
\[\top \]

Logical $False$
\[\bot \]

data $True \triangleq$

$I : True$

unit type

diagram:

- [Logical $True$]
 - \top

- [Logical $False$]
 - \bot

traditional logic *type theory*
Propositional Logic

Logical \(\text{True} \)
\[\top \]

Logical \(\text{False} \)
\[\bot \]

\textbf{traditional logic}

\textbf{type theory}

\textbf{data } \text{True} \triangleq
\[I : \text{True} \]
unit type

\textbf{data } \text{False} \triangleq
\[\leftrightarrow \text{ nothing} \]
bottom type

type with \textit{no constructors}
Propositional Logic

Conjunction
\[A \land B \]

Disjunction
\[A \lor B \]
Propositional Logic

Conjunction
A \land B

data Pair A B \triangleq pair : A \rightarrow B \rightarrow Pair A B
product types (A * B)

Disjunction
A \lor B

traditional logic
type theory
Propositional Logic

Conjunction
\(A \land B \)

Disjunction
\(A \lor B \)

data Pair A B \(\triangleq\)
\[
\begin{align*}
\text{pair} & : A \rightarrow B \rightarrow \text{Pair} A B \\
\text{product types} & (A \ast B)
\end{align*}
\]
data Either A B \(\triangleq\)
\[
\begin{align*}
\text{inl} & : A \rightarrow \text{Either} A B \\
\text{inr} & : B \rightarrow \text{Either} A B \\
\text{sum types} & (A + B)
\end{align*}
\]
Propositional Logic

Implication

\[P \rightarrow Q \]
Propositional Logic

Implication

\[P \rightarrow Q \]

function types!

\[P \rightarrow Q \]

traditional logic

type theory
Propositional Logic

Implication

\[P \rightarrow Q \]

Negation

\[\neg P \]

function types!

traditional logic

type theory
Propositional Logic

Implication

\[P \rightarrow Q \]

Negation

\[\neg P \]

traditional logic

\[P \rightarrow \text{False} \]

function to vacuity

\[P \rightarrow Q \]

function types!

\[P \rightarrow \text{False} \]

type theory
First-Order Logic

Function Symbols

\[f : S_1 \times S_2 \rightarrow S_3 \]

Predicates

\[R : S_1 \times S_2 \]

traditional logic type theory
First-Order Logic

Function Symbols
\[f : S_1 \times S_2 \to S_3 \]

Predicates
\[R : S_1 \times S_2 \]

well... functions.

traditional logic

type theory
First-Order Logic

Function Symbols
\[f : S_1 \times S_2 \rightarrow S_3 \]

Well-function.

Predicates
\[R : S_1 \times S_2 \]

Functions to Prop

traditional logic type theory
First-Order Logic

Equality
\[t_1 = t_2 \]

data \[\text{eq} \ A : A \to A \to \mathbb{P} \triangleq \]

\[\text{eq}_\text{refl} : \forall a : A. \text{eq} \ a \ a \]

definitional equality

traditional logic

type theory
First-Order Logic

Equality
\[t_1 = t_2 \]

\[\text{data } \text{eq } A : A \to A \to \mathbb{P} \triangleq \text{eq_refl } : \forall a : A. \text{eq } a \ a \]

\[\text{eq_refl } 8 : 8 = 8 \]

definitional equality

\[\text{eq } \text{nat } 8 \ 8 \equiv 8 = 8 : \mathbb{P} \]

\[\text{eq}_\text{refl } 8 \text{ is a proof that } 8 = 8 \text{ is valid.} \]

traditional logic

type theory
Quantifiers...

Universal Quantifier

\[\forall x : S. P(x) \]

Existential Quantifier

\[\exists x : S. P(x) \]

traditional logic

\textit{type theory}
Quantifiers...

Universal Quantifier
\[\forall x : S. P(x) \]

Existential Quantifier
\[\exists x : S. P(x) \]

dependent function types
(they even have the same syntax...)

\[\forall x : S. P x \]

traditional logic

type theory
Quantifiers...

Universal Quantifier
\[\forall x : S. P(x) \]

Existential Quantifier
\[\exists x : S. P(x) \]

dependent function types
(they even have the same syntax...)

traditional logic

type theory
Quantifiers...

Universal Quantifier
\[\forall x : S. \, P(x) \]

Existential Quantifier
\[\exists x : S. \, P(x) \]

dependent function types
(they even have the same syntax...)

\[\forall x : S. \, P(x) \]

\[\text{data} \, \text{Sig} \, S \, P \triangleq \]
\[\text{sig} : \forall x : S. \, P(x) \rightarrow \text{Sig} \, A \, B \]

dependent pair types

\[\text{traditional logic} \]

\[\text{type theory} \]
Quantifiers...

Universal Quantifier
\[\forall x : S. P(x) \]

Existential Quantifier
\[\exists x : S. P(x) \]

dependent function types
(they even have the same syntax...)

dependent pair types

data Sig S P ≜
\[\text{sig} : \forall x : S. P(x) \rightarrow \text{Sig A B} \]

traditional logic

\[: P \]

type theory
Quantifiers...

Universal Quantifier
\[\forall x : S. \, P(x) \]

Existential Quantifier
\[\exists x : S. \, P(x) \]

(\(\Pi\) types)
\[\forall x : S. \, P(x) \]
dependent function types
(they even have the same syntax...)

(data)
\[\text{Sig } S \, P \]
\[\text{sig} : \forall x : S. \, P(x) \rightarrow \text{Sig } A \, B \]

(\(\Sigma\) types)
dependent pair types

traditional logic

\[\text{type theory} \]
Quantifiers...

\[P \rightarrow Q \]
function types

\[\forall x : S. P x \]
dependent function types

\[\wedge \]
data Pair A B \triangleq
pair : A \rightarrow B \rightarrow \text{Pair A B}
product types (A * B)

\[\exists \]
data Sig S P \triangleq
sig : \forall x : S. P x \rightarrow \text{Sig A B}
dependent pair types

type theory
Quantifiers: an aside

• In Type Theory:

\(\forall \) is a dependent generalization of \(\rightarrow \)

\(\exists \) is a dependent generalization of \(\wedge \)
High-Order Quantifiers..!

Universal Quantifier

$$\forall x : S. P(x)$$

(Π types)

$$\forall x : S. P x$$

dependent function types

$$\forall A B (f : A \rightarrow B) x y. \ x = y \rightarrow f x = f y \ : \ P$$

traditional logic

| type theory |
Beyond First-Order Logic

Induction?
For \(n = 0 \): ...
Assume for \(n = k \),
prove for \(n = k+1 \):
...

traditional logic

type theory
Induction?
For \(n = 0 \): ...
Assume for \(n = k \),
prove for \(n = k+1 \):
...

\[
\text{fix } \lambda \text{IH } n. \ \text{match } n \text{ with}
\]
\[
0 \Rightarrow \quad \ldots \quad : P \ 0
\]
\[
S \ k \Rightarrow \quad \ldots (\text{IH } k) \ldots \quad : P \ (S \ k)
\]

Recursion!

\[\text{traditional logic} \] \hspace{1.5cm} \[\text{type theory} \]
Beyond First-Order Logic

Induction?

For \(n = 0 \): ...
Assume for \(n = k \),
prove for \(n = k+1 \):
...

\[
\text{fix } \lambda \text{IH } n. \text{ match } n \text{ with }
\begin{align*}
0 & \Rightarrow \quad \ldots \quad : P \ 0 \\
S \ k & \Rightarrow \quad \ldots \ (\text{IH } k) \ldots \quad : P \ (S \ k)
\end{align*}
\]
Recursion!

traditional logic

\textbf{type theory}
Beyond First-Order Logic

Induction?
For \(n = 0 \): ...
Assume for \(n = k \),
prove for \(n = k+1 \):
...

\[
\text{fix } \lambda \text{IH } n. \quad \text{match } n \text{ with } \\
0 \Rightarrow \quad \ldots \\
S k \Rightarrow \quad \ldots (\text{IH } k) \ldots \\
\text{Recursion!}
\]

\[
\forall n : \mathbb{N}. \quad P \ n \\
\]

traditional logic

type theory
Beyond First-Order Logic

Induction?
For \(n = 0 \): ...
Assume for \(n = k \),
prove for \(n = k+1 \):
...

Induction schema

\[
\begin{align*}
P(0) & \quad P(k) \rightarrow P(k+1) \\
\hline
P(n) & \\
\end{align*}
\]

Recursion!

\[
\text{fix } \lambda \text{IH } n. \quad \text{match } n \text{ with}
\begin{align*}
0 & \Rightarrow \ldots \quad : P 0 \\
S \ k & \Rightarrow \ldots (\text{IH } k) \ldots \quad : P (S \ k)
\end{align*}
\]

Induction principle

\[
\text{nat_ind} : \forall P : \mathbb{N} \rightarrow P.
\begin{align*}
P \ 0 & \rightarrow (\forall k : \mathbb{N} . \ P \ k \rightarrow P (S \ k)) \\
& \rightarrow \forall n : \mathbb{N}, \ P \ n
\end{align*}
\]

traditional logic

type theory
Curry-Howard Correspondence
Curry-Howard Correspondence

Haskell B. Curry
[1969]
Curry-Howard Correspondence

Haskell B. Curry [1969]

William A. Howard [1934, 1958]
Curry-Howard Correspondence

Haskell B. Curry [1969]

William A. Howard [1934, 1958]
Curry-Howard Correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositions / statements</td>
<td>Types</td>
</tr>
<tr>
<td>Proofs</td>
<td>Programs</td>
</tr>
<tr>
<td>True statement</td>
<td>Unit type</td>
</tr>
<tr>
<td>False statement</td>
<td>Bottom (empty) type</td>
</tr>
<tr>
<td>Conjunction</td>
<td>Product type (pair)</td>
</tr>
<tr>
<td>Disjunction</td>
<td>Sum type (either)</td>
</tr>
<tr>
<td>Implication</td>
<td>Function type</td>
</tr>
<tr>
<td>Universal quantification</td>
<td>Dependent function type</td>
</tr>
<tr>
<td>Existential quantification</td>
<td>Dependent pair type</td>
</tr>
<tr>
<td>Induction</td>
<td>Recursion</td>
</tr>
</tbody>
</table>
3-Step Plan for Proving Propositions

∀n : N. 0 ≤ n : P
3-Step Plan for Proving Propositions

- **Step 1.** Write program

```latex
\textbf{fix} \quad \forall \text{IH } n. \quad \text{\textbf{match} } n \text{ \textbf{with}} \quad \\
0 \quad \Rightarrow \quad \text{le}_n 0 \quad \\
\text{S } k \quad \Rightarrow \quad \text{le}_S 0 \ k \ (\text{IH } k) \quad \forall n : \mathbb{N}. \ 0 \leq n \ : \ P
```

- **Step 1.** Write program
3-Step Plan for Proving Propositions

- **Step 1.** Write program

  ```
  fix \lambda IH n. 
  match n with
  0 \Rightarrow \text{le}_n 0 
  S k \Rightarrow \text{le}_S 0 k \text{ (IH k)}
  ```

- **Step 2.** Type-check

 - : \(0 \leq 0 \)
 - : \(0 \leq S k \)
 - : \(\forall n : \mathbb{N}. \ 0 \leq n : \mathbb{P} \)
3-Step Plan for Proving Propositions

\[
\begin{align*}
\text{Step 1. } & \text{Write program} \\
\text{Step 2. } & \text{Type-check} \\
\text{Step 3. } & \text{Profit!}
\end{align*}
\]

\[
\text{fix } \lambda \text{IH } n. \\
\text{match } n \text{ with} \\
\quad 0 \Rightarrow \text{le}_n 0 \\
\quad S \ k \Rightarrow \text{le}_S 0 \ k \ (\text{IH } k)
\]

\[
: 0 \leq 0 \\
: 0 \leq S \ k \\
: \forall n : \mathbb{N}. 0 \leq n : \mathbb{P}
\]
3-Step Plan for Proving Propositions

Step 1. Write program

\[
\text{fix } \lambda (\text{IH} : \forall n : \mathbb{N}. 0 \leq n) \ n. \\
\text{IH} \ n
\]

Step 2. Type-check

\[
\forall n : \mathbb{N}. 0 \leq n : \mathbb{P}
\]

Step 3. Profit?

Errhm….
3-Step Plan for Proving Propositions

∀n : N. 0 ≤ n : \(P \)
3-Step Plan for Proving Propositions

- **Step 1.** Write program

\[
\text{fix } \lambda \text{IH } n. \\
\text{match } n \text{ with} \\
\quad 0 \Rightarrow \text{le}_n 0 \\
\quad S \ k \Rightarrow \text{le}_S 0 \ k \ (\text{IH } k)
\]

\[\forall n : \mathbb{N}. \ 0 \leq n \quad : \quad P\]
3-Step Plan for Proving Propositions

- **Step 1.** Write program

  ```
  fix \lambda IH n. 
  match n with 
  0 \Rightarrow le_n 0
  S k \Rightarrow le_S 0 k (IH k)
  ```

- **Step 2.** Type-check

 \[\forall n : \mathbb{N}. 0 \leq n : \mathbb{P} \]

 - \(: 0 \leq 0 \)
 - \(: 0 \leq S k \)
3-Step Plan for Proving Propositions

- **Step 1.** Write program

  ```
  fix \lambda IH n. 
  match n with 
  0 => le_n 0 
  S k => le_S 0 k (IH k) 
  ```

- **Step 2.** Type-check

 - `0 ≤ 0`
 - `0 ≤ S k`

- **Step 3.** Termination check

 `∀ n : \mathbb{N}. 0 ≤ n : \mathbb{P}`
Constructivism

• Type Theory is a form of constructive mathematics.

 ‣ To prove $A \lor B$:
 one has to show how to determine whether A is true or B is true.

 ‣ To prove $\exists x. P$:
 one has to show how to find a value of x that satisfies P.
Constructivism

• Type Theory is a form of constructive mathematics.
 ▸ To prove $A \lor B$: one has to show how to determine whether A is true or B is true.
 ▸ To prove $\exists x. P$: one has to show how to find a value of x that satisfies P.
Constructivism

- Type Theory is a form of constructive mathematics.
 - To prove $A \lor B$: one has to show how to determine whether A is true or B is true.
 - To prove $\exists x. P$: one has to show how to find a value of x that satisfies P.

Compute (algorithm!)
Implementation

Coq

Thierry Coquand

CoC

[1988]

Calculus of Constructions

later CIC

Calculus of Inductive Constructions
Implementation

Coq

nat list A le x y A \ B

Type

Set Prop
Lab 4

• Prove some properties of natural numbers
 ‣ Follow the lemmas in gcd.v and fill in the proofs

• Prove (partial) correctness of a “softened” version of Euclid’s GCD algorithm.
 ‣ (gcd_correct) If gcd terminates, then the return value is a GCD according to the predicate is_gcd
 ○ Use auxiliary lemma gcd_step_aux, then apply it in the step_a and step_b branches of the induction on gcd.