Type Theory
(the very basics)

Lecture #5

Spring, 2019

236608

Software Synthesis and Automated Reasoning
Reasoning

Type Theory (basics)

λ-calculus

Dependent Types

Programming by Example

Syntax Guided Synthesis

Counterexample Guided Inductive Synthesis

Type Directed Synthesis

Refinement Types

Axiomatic Semantics

Satisfiability Modulo Theory
What is Type Theory?

[1971]
Per Martin-Löf

Type Theory is a logic.

- but, being based on λ-calculus, is bares close similarity to programming languages.
Type Theory is a Logic

• As a logic, it is interested in making judgements of the form:
 ▶ A is a set
 ▶ A_1 and A_2 are equal sets
 ▶ a is in an element of set A
 ▶ a_1 and a_2 are equal elements in A
Judgement Forms

• To know that A is a set is to know how to form the *canonical elements* in the set and under what conditions two canonical elements are equal.

Set of natural numbers

<table>
<thead>
<tr>
<th>Inductive</th>
<th>nat \triangleleft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 : nat</td>
<td></td>
</tr>
<tr>
<td>S : nat \rightarrow nat</td>
<td></td>
</tr>
</tbody>
</table>

0
1 \triangleleft S 0
2 \triangleleft S (S 0)
3 \triangleleft S (S (S 0))

Set of lists

<table>
<thead>
<tr>
<th>Inductive</th>
<th>List E \triangleleft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil : List E</td>
<td></td>
</tr>
<tr>
<td>Cons : E \rightarrow List E \rightarrow List E</td>
<td></td>
</tr>
</tbody>
</table>

[] \triangleleft Nil
[a$_1$] \triangleleft Cons a$_1$ Nil
[a$_1$, a$_2$] \triangleleft Cons a$_1$ (Cons a$_2$ Nil)
[a$_1$, a$_2$, a$_3$] \triangleleft Cons a$_1$ (Cons a$_2$ (Cons a$_3$ Nil))

⋮
Judgement Forms

• If A is a set then to know that $a \in A$ is to know that a, when evaluated, yields a canonical element of A as value.

\[
\text{(fix } \lambda h. \text{ match } n \text{ with } \\
0 \Rightarrow \text{Nil} \\
S k \Rightarrow \text{Cons } n (h k) \text{ end) 8 : List nat}
\]

› We know this from our typing rules and from properties of the type system (progress & preservation)
Judgement Forms

• Quite unsurprisingly then,

 ‣ Sets are characterized by types,
 ‣ Membership is characterized by typing rules.
Propositions in Type Theory

• Propositions are **types**.
 - A member of the type represents a **proof** of the proposition.
 (sometimes called a **witness**.)

\[
\begin{align*}
 t & : 3 > 2 \\
 3 > 2 & : \mathbb{P}
\end{align*}
\]

 - Propositions have a special type called **Prop**, or \(\mathbb{P} \).
Propositional Logic

Logical \textit{True} \quad \top \quad \text{Inductive} \text{ True} \triangleq \text{I} : \text{True}

Logical \textit{False} \quad \bot \quad \text{Inductive} \text{ False} \triangleq \leftarrow \text{nothing} \rightarrow

\text{traditional logic} \quad \text{type theory}
Propositional Logic

Conjunction
\[A \land B \]

Inductive
\[\text{Pair } A \rightarrow B \rightarrow \text{Pair } A \land B \]
product types \((A \times B)\)

Disjunction
\[A \lor B \]

Inductive
\[\text{Either } A \rightarrow B \rightarrow \text{Either } A \lor B \]
sum types \((A + B)\)

traditional logic

type theory
Propositional Logic

Implication

\[P \rightarrow Q \]

Negation

\[\neg P \]

\[P \rightarrow Q \]

function types!

\[P \rightarrow \text{False} \]

function to vacuity

traditional logic
type theory
First-Order Logic

Function Symbols
\[f : S_1 \times S_2 \rightarrow S_3 \]

Predicates
\[R : S_1 \times S_2 \]

well... functions.

traditional logic

type theory

\[f : S_1 \rightarrow S_2 \rightarrow S_3 \]

\[R : S_1 \rightarrow S_2 \rightarrow \mathbb{P} \]

functions to Prop
Equality
\[t_1 = t_2 \]

Inductive
\[
\begin{align*}
\text{eq} \, A : A \rightarrow A \rightarrow \mathbb{P} & \equiv \\
\text{eq_refl} : \forall a : A. \text{eq} \, a \, a
\end{align*}
\]
definitional equality

eq [nat] 8 8 = 8 = 8 : \mathbb{P}

eq_refl 8 : 8 = 8

I am a type!

eq_refl 8 is a proof that 8 = 8 is valid.

traditional logic

type theory
Quantifiers...

Universal Quantifier
\[\forall x : S. \, P(x) \]

Existential Quantifier
\[\exists x : S. \, P(x) \]

(dependent function types)

(they even have the same syntax...)

Inductive
\[\text{Inductive } \text{Sig } S \, P \triangleq \]
\[\text{sig} : \forall x : S. \, P(x) \rightarrow \text{Sig } S \, P \]

(dependent pair types)

\(\Pi\) types)

\(\Sigma\) types)

traditional logic type theory
Quantifiers...

\[P \rightarrow Q \]
function types

\[\forall x : S. P x \]
dependent function types

\[\land \]

Inductive Pair A B \(\triangleq \)

pair : A \(\rightarrow \) B \(\rightarrow \) Pair A B

product types (A * B)

\[\exists \]

Inductive Sig S P \(\triangleq \)

sig : \(\forall x : S. P x \rightarrow Sig S P \)
dependent pair types

type theory
Quantifiers: an aside

• In Type Theory:

\(\forall \) is a dependent generalization of \(\rightarrow \)

\(\exists \) is a dependent generalization of \(\land \)
High-Order Quantifiers

Universal Quantifier

\[\forall x : S. \ P(x) \]

dependent function types

\[\forall A B \ (f : A \rightarrow B) \ x \ y. \ x = y \rightarrow f \ x = f \ y : \ P \]

dependent function types

traditional logic type theory
Beyond First-Order Logic

Induction?

For \(n = 0 \): ...
Assume for \(n = k \),
prove for \(n = k+1 \):
...

induction schema

\[
\begin{align*}
P(0) & \quad P(k) \to P(k+1) \\
\hline&P(n)
\end{align*}
\]

induction principle

\[
\text{nat_ind} : \forall P : \mathbb{N} \to \mathbb{P}. \\
P(0) \to (\forall k : \mathbb{N}. P(k) \to P(S k)) \to \forall n : \mathbb{N}, P(n)
\]
Curry-Howard Correspondence

Haskell B. Curry [1969]

William A. Howard [1934, 1958]
Curry-Howard Correspondence

<table>
<thead>
<tr>
<th>Logic</th>
<th>Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositions / statements</td>
<td>Types</td>
</tr>
<tr>
<td></td>
<td>Programs</td>
</tr>
<tr>
<td>Proofs</td>
<td></td>
</tr>
<tr>
<td>True statement</td>
<td>Unit type</td>
</tr>
<tr>
<td>False statement</td>
<td>Bottom (empty) type</td>
</tr>
<tr>
<td>Conjunction</td>
<td>Product type (pair)</td>
</tr>
<tr>
<td>Disjunction</td>
<td>Sum type (either)</td>
</tr>
<tr>
<td>Implication</td>
<td>Function type</td>
</tr>
<tr>
<td>Modus ponens</td>
<td>Function application</td>
</tr>
<tr>
<td>Universal quantification</td>
<td>Dependent function type</td>
</tr>
<tr>
<td>Existential quantification</td>
<td>Dependent pair type</td>
</tr>
<tr>
<td>Induction</td>
<td>Recursion</td>
</tr>
</tbody>
</table>
Inductively Defined Predicates

Inductive \(eq\) : \(A \rightarrow A \rightarrow \mathbb{P} \triangleq\)
- \(eq_refl : \forall a : A. \ eq\ a\ a\)

Inductive \(\le\) : \(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{P} \triangleq\)
- \(\le_n : \forall a : \mathbb{N}. \ le\ a\ a\)
- \(\le_S : \forall a\ b : \mathbb{N}. \ le\ a\ b \rightarrow \ le\ a\ (S\ b)\)

\(a = b \triangleq eq\ a\ b\)

\(a \le b \triangleq le\ a\ b\)
3-Step Plan for Proving Propositions

- **Step 1.** Write program

  ```
  fix \lambda IH n. 
  match n with 
  0 \Rightarrow le_n 0 
  S k \Rightarrow le_S 0 k (IH k) 
  ```

- **Step 2.** Type-check

 : \forall n : \mathbb{N}. 0 \leq n : P

- **Step 3.** Profit!

: 0 \leq 0

: 0 \leq S k
3-Step Plan for Proving Propositions

```haskell
fix \(\lambda (\text{IH} : \forall n : \mathbb{N}. \ 0 \leq n) \ n.\)
  IH n
```

- **Step 1.** Write program
- **Step 2.** Type-check
- **Step 3.** Profit?

What about this fine program, though?

\[\forall n : \mathbb{N}. \ 0 \leq n : \mathbb{P} \]
3-Step Plan for Proving Propositions

- **Step 1.** Write program
 - fix \(\lambda \text{IH} \ n. \)
 - match \(n \) with
 - \(0 \) => \(\text{le}_n 0 \)
 - \(S \ k \) => \(\text{le}_S 0 \ k \) (IH \(k \))

- **Step 2.** Type-check:
 - \(: 0 \leq 0 \)
 - \(: 0 \leq S \ k \)
 - \(: \forall n : \mathbb{N}. \ 0 \leq n : \ P \)

- **Step 3.** Termination check
Constructivism

• Type Theory is a form of constructive mathematics.
 ‣ To prove $A \lor B$: one has to show how to determine whether A is true or B is true.
 ‣ To prove $\exists x. P$: one has to show how to find a value of x that satisfies P.

Compute (algorithm!)
Implementation

Coq

Thierry Coquand

CoC

[1988]

Calculus of Constructions

later CIC

Calculus of Inductive Constructions

[1989]
Implementation

Coq

Type

Set

Prop

nat

list A

le x y

A \wedge B
Lab #4

• Prove some properties of natural numbers
 ‣ Follow the lemmas in gcd.v and fill in the proofs

• Prove (partial) correctness of a “softened” version of Euclid’s GCD algorithm.
 ‣ (gcd_correct) If gcd terminates, then the return value is a GCD according to the predicate is_gcd
 ○ Use auxiliary lemma gcd_step_aux, then apply it in the step_a and step_b branches of the induction on gcd.