Simply Typed \(\lambda\)-Calculus + Polymorphism

\(\lambda\)-Calculus Cheatsheet

Syntax
\[
E ::= v \mid \lambda v.E \mid E E
\]

Reduction Rules
- **\(\alpha\)-rule**: \(\lambda x.e \rightarrow \lambda y.(y/x)\) if \(y \notin \text{PV}(E)\)
- **\(\beta\)-rule**: \((\lambda x.e_1) e_2 \rightarrow e_1[e_2/x]\)
- **\(\eta\)-rule**: \((\lambda x.e\ x) \rightarrow e\) if \(x \notin \text{PV}(E)\)

Redex
\((\lambda x.E) E\)

Normal Form
An expression without redexes

(Untyped) \(\lambda\)-Calculus Semantics

- What is the normal form of

\[
(\lambda f\ x. f\ (f\ x))\ (\lambda a\ b\ c. a\ b\ c)\ (\lambda x\ y. y)
\]

2 ite False

(Untyped) \(\lambda\)-Calculus Semantics

- **Problem #1**
 - \(\lambda\)-calculus assigns a semantics for *every term* (even when the operation does not match the operands).

 \[
 2 \text{ ite False} \rightarrow^* \text{False}
 \]

- **Problem #2**
 - \(\lambda\)-calculus semantics is inconsistent.

 \[
 \underbrace{u} = \lambda x. \text{not}\ (x\ x) \quad \Rightarrow \quad \underbrace{u\ u} = \text{TRUE} \quad \Leftrightarrow \quad \underbrace{u\ u} = \text{FALSE}
 \]

 \[
 (u\ u) \rightarrow^* \text{not}\ (u\ u)
 \]

 (as usual, paradox is caused by self-application.)

Types, intuitively

Type of the Untyped

- What is the type of \(\lambda f\ x. f\ (x\ f)\)?

Function types use the notation:

\[
\text{(argument type)} \rightarrow \text{(result type)}
\]

\[\text{all untyped } \lambda\text{-calculus terms have the "type".}\]
Simply Typed λ-Calculus

- **Ingredients:**
 - **B** — set of base types (e.g., int, nat, real, bool)
 - **τ = B ∪ {τ → τ}** — closure under ‘→’ (function type constructor)
 - **C** — set of (typed) term constants (e.g., (1, True))

- **Extended syntax for expressions:**
 - \[E ::= v \mid \lambda v : \tau . E \mid E \cdot E \mid c\]
 - variable
 - typed abstraction
 - application
 - constant

- **Typing rules**

1. **Type Checking**
 Given an expression \(e \) and a type environment for the free variables of \(e \), check if \(e \) is well-typed and return its type.

2. **Type Inference**
 Given an expression \(e \) with partial or no type annotations, compute the types of all variables in \(e \), as well as the type of \(e \).
From Checking to Inference

Type Checking

int f(int x) {
 return x+1;
}

int g(int y) {
 return f(y+1)*2;
}

Type Inference

\[
\begin{align*}
\text{Let } f & \equiv \lambda x. x + 2 \\
\text{Then } f & \equiv \lambda x. x + 2
\end{align*}
\]

Type Inference: Basic Idea

- What is the type of \(f \)?
 - \(\text{plus (+)} \) has type \(\text{nat} \rightarrow \text{nat} \rightarrow \text{nat} \)
 - \(2 \) has type \(\text{nat} \)
 - Since \(\text{plus} \) is applied to \(x \) we need \(x : \text{nat} \)
 - \(\Rightarrow f \equiv \lambda x : \text{nat}. x + 2 \) has type \(\text{nat} \rightarrow \text{nat} \)

Type Inference: Basic Idea

- Plan
 - \textbf{Step 1.} Assign type variables to sub-terms
 - \textbf{Step 2.} Generate type constraints
 - \textbf{Step 3.} Solve constraints

Step 1. Assign type variables

\[
\begin{align*}
T_0 & = T_1 \rightarrow T_3 \\
T_3 & = T_2 \rightarrow T_1 \\
T_5 & = T_4 \rightarrow T_1 \\
T_1 & = \text{nat} \rightarrow \text{nat} \rightarrow \text{nat}
\end{align*}
\]

Step 2. Generate type constraints

\[
\begin{align*}
T_0 & = T_1 \rightarrow T_3 \\
T_3 & = T_2 \rightarrow T_1 \\
T_5 & = T_4 \rightarrow T_1 \\
T_1 & = \text{nat} \rightarrow \text{nat} \rightarrow \text{nat}
\end{align*}
\]
Step 3. Solve the constraints

\[f \equiv \lambda x. x + 2 \]

\[T_0 = T_1 \rightarrow T_2 \]
\[T_3 = T_1 \rightarrow T_2 \]
\[T_4 = \text{nat} \]
\[T_5 = \text{nat} \rightarrow \text{nat} \rightarrow \text{nat} \]

Unify

\[T_0 = T_1 \rightarrow T_2 \]
\[T_3 = T_4 \rightarrow T_2 \]
\[T_5 = T_1 \rightarrow T_4 \rightarrow T_2 \]
\[T_4 = \text{nat} \]
\[T_5 = \text{nat} \rightarrow \text{nat} \rightarrow \text{nat} \]

Unify

\[T_1 = \text{nat} \rightarrow T_4 \rightarrow T_2 \]
\[T_5 = \text{nat} \rightarrow \text{nat} \rightarrow \text{nat} \]
Step 3. Solve the constraints

\[f = \lambda x. x + 2 \]

What was that **Unify**?

- Unify \(t_1 \) and \(t_2 \):
 - for type expressions, \(t_1 \neq t_2 \):
 - If \(t_1 = T_i \) ⇒ admit \(T_i = t_1 \)
 - If \(t_2 = T_j \) ⇒ admit \(T_j = t_2 \)
 - If \(t_1 = s_1 \rightarrow t_1', t_2 = s_2 \rightarrow t_2' \) ⇒
 - Unify \(s_1 \) and \(s_2 \)
 - Unify \(t_1' \) and \(t_2' \)
 - If none of the above ⇒ unification fails.

Pros and Cons

- Good news
 - Weird expressions like \(2 \text{ite} \text{False} \) are not well-typed.
 - Self application \(\text{u u} \) is not well-typed — paradox avoided.

Pros and Cons

- Bad news
 - Last lecture's definitions of \(\text{plus, ite, etc.} \) are not well-typed either.

⇒ These will all have to become constants.
Each of them will need a dedicated derivation rule.

⇒ The recursion combinator (\(\text{Y} \)) is not well-typed either!

⇒ We will have to add a new syntactic construct for recursion, with more dedicated derivation rules.

Polymorphism
Polymorphism

What is the type of \(\lambda f \, x. f \, (f \, x) \)?

Answer: it depends!

\[
\lambda (f : A \rightarrow A) \, (x : A), \; f \, (f \, x) : \forall A. (A \rightarrow A) \rightarrow A \rightarrow A
\]

\(\alpha \) is a type variable

Extended syntax —

\[
\tau ::= B \mid \alpha \mid \tau \rightarrow \tau \mid \forall \alpha. \tau
\]

\[
E ::= \cdots \mid \Lambda \alpha. E \mid E[\tau]
\]

Type
“abstraction”
(generalization)

Type
“application”
(instantiation)

\[
\Lambda A. \lambda (f : A \rightarrow A) \, (x : A), \; f \, (f \, x) : \forall A. (A \rightarrow A) \rightarrow A \rightarrow A
\]

Extended semantics —

\[
\Gamma \vdash e : A
\]

\[
\Gamma \vdash e : \forall \alpha. A
\]

\[
\Gamma \vdash e : A
\]

\[
\Gamma \vdash e : \forall \alpha. A
\]

Everything has a price

- Type inference is gravely needed
 - Unfortunately, it cannot eliminate 100% of type annotations
 - Although Church encoding can be typed, it is rarely used this way
 - Spoiler: inductive types are used instead.

```
let 2 = \f x. f (f x) in
let succ = \n f x. f (f x) in
2 succ

let 2 = \A. \alpha (f : A \rightarrow A) \, (x : A), \; f \, (f \, x) in
let succ = \n : \forall A. (A \rightarrow A) \rightarrow A \rightarrow A.
  \alpha (f : A \rightarrow A) \, (x : A), \; f \, (f \, x) in
2 succ
```

Untyped

- Simply typed + polymorphism
Everything has a price

- Some complexity results
 - Hindley-Milner: arguments types are monomorphic
 ⇒ type inference is EXPTIME-complete
 - (using +/- the same algorithm)
 - Full System-F ⇒ type inference is undecidable
 - (requires high-order unification)

Everything has a price

\[Y = \lambda f. (\lambda x. (f (x x))) \ (\lambda x. (f (x x))) \]

\[\text{Cannot be typed — even with polymorphism} \]
- No recursion — no game!
⇒ Special syntactic form: fix

\[\text{fix e} \rightarrow e (\text{fix e}) \]

Limitations

- What still makes our lives difficult:
 - Subtyping (a.k.a. inheritance)
 - Ad-hoc polymorphism (a.k.a. overloading)
 - Dynamic dispatch (which has a flavor of both)

\[\text{Disclaimer: personal opinion} \]
This is the main cause for the gap between functional and object-oriented programming languages.

Exercise #1

- Implement a type checker with inference for simply typed \(\lambda \)-calculus.
 - Better to implement ‘unify’ first.
 - Simplifying assumption: base types are lowercase
 - Feel free to name your type variables T1, T2, etc.

\[\text{Input}: \text{an expression with some type annotations} \]
\[\text{Output}: \]
 - The fully annotated expression
 - The type of the expression