Formal Semantics: Transition Systems

Specifying Programs in CIC

- Recursion must be structural

```plaintext
# n ≥ 0
fixpoint fact n :=
  if n == 0 then 1
  else n * fact (n-1)
```

Not structurally decreasing 😞

```plaintext
# n ≥ 0
fixpoint fact n :=
  match n with
  0  => 1
  | k => n * fact k
```

Structurally decreasing 😊

Specifying Programs in CIC

- Sometimes there's no obvious way

```plaintext
# a,b > 0
while a != b:
  if a < b:
    b = b - a
  else:
    a = a - b
```

Iterative

```plaintext
# a,b > 0
fixpoint f a b :=
  if a == b then a
  else if a < b
    then f a (b - a)
    else f (a - b) b
```

Recursive

The Need for Termination

- We could prove termination of f...
 - ...but we need to define it first!
 - It can get very annoying to prove termination of every single program we write.

- Also, what do you know,
 - Some programs don't terminate.
Define Programs via Relations

- A program relates inputs to outputs.

\[
\text{Inductive euclid : } \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{P} : = \\
\text{base : } \forall a, \text{euclid } a \ a \ a \\
\text{step}_a : \forall a b z, a < b \rightarrow \text{euclid } a (b - a) z \rightarrow \text{euclid } a b z \\
\text{step}_b : \forall a b z, a > b \rightarrow \text{euclid } (a - b) b z \rightarrow \text{euclid } a b z.
\]

Proving termination reduces to:

Lemma euclid_terminates :
\[
\forall a b : \mathbb{N}, a > 0 \rightarrow b > 0 \rightarrow \exists z : \mathbb{N}, \text{euclid } a b z.
\]

Transition Systems

- A transition relation describes how the program state changes as statements are executed.

Programming Language Semantics

- WHILE language

 Syntax:

 \[
 S \rightarrow x := E | S | S | \text{skip} | \text{if } E \text{ then } S \text{ else } S | \text{while } E \text{ do } S \\
 E \rightarrow x | \# | E \bowtie E
 \]

Semantics: Expressions

- \(\sigma : \text{Var} \rightarrow \mathbb{Z} \)

 A store — assigns one value per variable

- \(\Sigma \) — the set of all such stores

- \([e] : \Sigma \rightarrow \mathbb{Z} \)

 \([e]_\sigma\) is the value of \(e \) when interpreted in state \(\sigma \)

\[
[a - b]([18, 16]) = 3
\]
Semantics: Expressions

Base cases

\[[x] \sigma = \sigma x \quad (x \in \text{Var}) \]
\[[n] \sigma = n \quad (n \in \mathbb{Z}) \]

Recursive case

\[[e_1 \circ e_2] \sigma = [e_1] \sigma \circ [e_2] \sigma \]

Structural Operational Semantics

Small-step Semantics

- Define a new relation:
 \[\sigma, c \rightarrow o', c' \]
 - running statement \(c \) in state \(\sigma \) results in a new state \(o' \) and a new ("remaining") command \(c' \).
 - \(c' \) serves as program counter
- An execution is a trace:
 \[\langle \sigma, c \rangle \rightarrow \langle \sigma_1, c_1 \rangle \rightarrow \langle \sigma_2, c_2 \rangle \rightarrow \ldots \rightarrow \langle \sigma_n, c_n \rangle \]

Rule-based definition of \(\rightarrow \):

- \[\sigma, x := e \rightarrow \sigma[x := [e] \sigma], \text{skip} \]
- \[\sigma, c_1 \rightarrow o', c_1' \]
- \[\sigma, c_1; c_2 \rightarrow o', c_1'c_2' \]
- \[\sigma, \text{skip}; c_2 \rightarrow \sigma, c_2 \]

Back to Transition Relation

- We can choose the granularity we want.
 - Single statement, basic block, etc.
 - A popular choice: loop-free blocks

Example

\[\Sigma \times \{a, b\} \rightarrow \{ \} = \Sigma \times \Sigma \]

\[\text{step} \alpha \circ \sigma \rightarrow \langle c_1, c \rangle \rightarrow \alpha \circ \sigma \]

\[\text{assume } a < b \]
- if \(a < b \) then
 \(b := b - a \)
- else
 \(a := a - b \)
Reasoning with Transition Relation

- **We want to prove:**
 \[\forall s : \Sigma. \ step^* s_0 s \rightarrow P s \]

- **Where:**
 - \(s_0 \) is (the/an) initial state
 - \(\text{step}^* \) is the transitive closure of \(\text{step} \)
 - \(P \) is a safety property, \(P : \Sigma \rightarrow \mathbb{P} \)

- **E.g.,**
 \[s_0 = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix} \]
 \[P (a, b) \triangleq (a = b) \rightarrow a = \text{gcd} a, b \]

Lab #5

- **McCarthy’s “91 function”**

 \[
 M(n) = \begin{cases}
 n - 10 & \text{if } n > 100 \\
 M(M(n + 11)) & \text{if } n \leq 100
 \end{cases}
 \]

 def m(n):

  ```python
  def m(n):
      a = 1
      while a > 2:
          if n > 100: n -= 10 \\
          else: n += 11
          a += 2
      return n
  ```

- **Prove:** For inputs 101 or less, \(M \) always returns 91.