מבחין לعربיד אתונות אקריאים – مدريد

פתור

שאלה 1:

א. כש \(k \) גדל, המדידות שהופנו פחות רלוונטיות. דרך אחרת לראות זאת היא שהקורלציה בין \(X_n \) ל\(X_{n-i} \) כאשר \(i > 1 \) גדל, קיוויה שהמדידות נהיית פחות רלוונטיות בخلاלה. הקורלציה הרגולרית.

ב. ראשית נראה כי \(X_n \) ס.""ר: \(E(X_n) = E(Q_n) + E(1-A)P_n = 0 \)

\(E(X_n X_{n+k}) = E(A)E(Q_n Q_{n+k}) + E(1-A)^2 E(P_n P_{n+k}) = 0 = q_{r_q}(k) + (1-q)r_p(k) \)

נסמן \(Q(n) \) ויינו התיליר \(Y(n) = AQ(n) \). \(Y(n) \) \(EY_n Y_{n+k} = E(A)^2 EQ_n Q_{n+k} = q_{r_q}(k) \)

נסמן \(Z(n) \) \(E(Y_n Y_{n+k}) = E(AR_n (1-A) P_n) = E(A(1-A))E(Q_n E(P_n) = 0 \)

\(Z(n) = e^{j\omega_0} Z(n-1) \) \(E(Y_n Z_{n+k}) = E(AR_n (1-A) P_n) = E(A(1-A))E(Q_n E(P_n) = 0 \)

\(X(n) \) \(E(Y_n Z_{n+k}) = E(AR_n (1-A) P_n) = E(A(1-A))E(Q_n E(P_n) = 0 \)

ג. מתכימה: \(Z(n) = e^{j\omega_0} Z(n-1) \)

\(Z(n+k) = e^{j\omega_0} Z(n+k-1) = e^{j2\omega_0} Z(n+k-2) = ... = e^{j(k+1)\omega_0} Z(n-1) \)

ולכן ננתח סדרת מוחכרים של \(X(n) \) \(Z(n+k) \) \(Y(n) \) \(Wold \) \(Z(n) \) \(Y(n) \) \(EY_n Y_{n+k} = E(A)^2 EQ_n Q_{n+k} = q_{r_q}(k) \)

לכן ניתן להנתח סדרת מוחכרים של \(X(n) \) \(Z(n+k) \) \(Y(n) \) \(Wold \) \(Z(n) \) \(Y(n) \) \(EY_n Y_{n+k} = E(A)^2 EQ_n Q_{n+k} = q_{r_q}(k) \)
\[
\hat{Z}^{(N)}(n+k|n-1) = \frac{1}{N} \sum_{i=1}^{N} e^{j(k+i)\theta} X(n-i) = \frac{1}{N} \sum_{i=1}^{N} e^{j(k+i)\theta} Y(n-i) + \frac{1}{N} \sum_{i=1}^{N} e^{j(k+i)\theta} Z(n-i) \\
\overset{N \rightarrow \infty}{\longrightarrow} Z(n+k)
\]

Therefore, the output of \(Y(n) \) is obtained by filtering \(Y(n-1), Y(n-2), \ldots \) through a Wiener filter. The output \(\tilde{Y}(n) \) is defined as:

\[\tilde{Y}(n) = Y(n-1)Y(n-k-1), Y(n-k-2), \ldots \]

The characteristic equation of the system is:

\[S_{yy}(z) = S_{yy}(z) \]

and

\[r_{yy}(j) = \mathbb{E}[\tilde{Y}(n)\tilde{Y}(n-j)] = \mathbb{E}[Y(n)Y(n-k-1-j)] = r_{yy}(j+k+1) \]

\[\Rightarrow S_{yy}(z) = z^{k+1}S_{yy}(z) \]

The Wiener filter is:

\[P(z) = \frac{1}{S_{yy}^+(z)} \left\{ \frac{z^{k+1}S_{yy}(z)}{S_{yy}^+(z)} \right\} = \frac{1}{S_{yy}^+(z)} \left\{ \frac{z^{k+1}S_{yy}(z)S_{yy}^+(z)}{S_{yy}^-(z)} \right\} = \frac{\left\{ z^{k+1}H(z) \right\}^+}{H(z)} \]

For \(H(z) = \frac{1}{1-az^{-1}} = 1 + az^{-1} + a^2z^{-2} + \ldots = \sum_{i=0}^{\infty} a^iz^{-i} \)

\[\left\{ z^{k+1}H(z) \right\}^+ = \left\{ \sum_{i=0}^{\infty} a^iz^{k+i-1} \right\}^+ = \sum_{i=0}^{k} a^iz^{k+i} + \sum_{i=k+1}^{\infty} a^iz^{-i} = z^{k+1}H(z) - \sum_{i=0}^{k} a^iz^{k+i} \]

\[\tilde{P}(z) = \left\{ \frac{z^{k+1}H(z)}{H(z)} \right\}^+ = \frac{z^{k+1}H(z) - \sum_{i=0}^{k} a^iz^{k+i}}{H(z)} = z^{k+1} \left\{ \frac{\sum_{i=0}^{k} a^iz^{k+i}}{H(z)} \right\} \]

For all \(Y(n) \) in the input sequence, the output \(\tilde{Y}(n) \) is obtained by filtering the input sequence through the Wiener filter.
\[
P(z)=1-\left(\sum_{i=0}^{k} a^i z^{-i}\right)(1-az^{-1}) = 1-(1-az^{-1}+a^2 z^{-2}+\cdots+a^k z^{-k}-a^{k+1} z^{-(k+1)}) = a^{k+1} z^{-(k+1)}
\]

\[Y(n) = Y(n+k \mid n-1)\]

\[
\hat{Y}(n+k \mid n-1) = a^{k+1} Y(n-1)
\]

\[\hat{Y}^{(N)}(n-1 \mid n-1) = X(n-1) - \hat{Z}^{(N)}(n-1 \mid n-1) = X(n-1) - \frac{1}{N} \sum_{i=1}^{N} e^{i n \theta (i-1)} X(n-i)
\]

\[
\hat{Y}^{(N)}(n+k \mid n-1) = a^{k+1} \left[X(n-1) - \frac{1}{N} \sum_{i=1}^{N} e^{i n \theta (i-1)} X(n-i) \right]
\]

\[
\hat{X}^{(N)}(n+k \mid n-1) = \hat{Y}^{(N)}(n+k \mid n-1) + \hat{Z}^{(N)}(n+k \mid n-1)
\]

\[\text{שאלה 2:}
\]

א. נתון כי \(Z\) מתConfigurationException, \(I\), Fisher \(\hat{X}^{(N)}\) מת務ך, \(\hat{Y}^{(N)}\) מת務ך: \(\frac{\partial \log f_{\theta_1 \theta_2}(y, z)}{\partial \theta_1} = \frac{\partial \log f_{\theta_1 \theta_2}(y)}{\partial \theta_1}\)

ולכן:
\[
\frac{\partial \log f_{\theta_1 \theta_2}(y, z)}{\partial \theta_2} = \frac{\partial \log f_{\theta_1 \theta_2}(y)}{\partial \theta_2} + \frac{\partial \log f_{\theta_1 \theta_2}(z)}{\partial \theta_2}
\]

נחשב את המטריצה האינפורמטית \(\hat{I}\), Fisher \(\hat{X}^{(N)}\) מת務ך, \(\hat{Y}^{(N)}\) מת務ך.
כש השוויון האתחורי novità ב-1, י"ל בתרגום תלמ"ד:

\[\mathbb{E} \left[\frac{\partial f_{\hat{\theta}_1, \hat{\theta}_2}(y, z)}{\partial \theta_1} \cdot \frac{\partial f_{\hat{\theta}_1, \hat{\theta}_2}(y, z)}{\partial \theta_2} \right] = \mathbb{E} \left[\frac{\partial \log f_{\theta}(y)}{\partial \theta_1} \cdot \frac{\partial \log f_{\theta}(z)}{\partial \theta_2} \right] = 0 \]

באותו אופן, מתכרטם:

\[
\tilde{I}_{11} = \mathbb{E} \left[\frac{\partial \log f_{\hat{\theta}_1, \hat{\theta}_2}(y, z)}{\partial \theta_1} \right]^2 = \mathbb{E} \left[\frac{\partial \log f_{\hat{\theta}_1, \hat{\theta}_2}(y)}{\partial \theta_1} \right]^2 = I_{11}
\]
\[
\tilde{I}_{12} = \tilde{I}_{21} = \mathbb{E} \left[\frac{\partial \log f_{\hat{\theta}_1, \hat{\theta}_2}(y, z)}{\partial \theta_1} \cdot \frac{\partial \log f_{\hat{\theta}_1, \hat{\theta}_2}(y, z)}{\partial \theta_2} \right] = I_{12}
\]
\[
\tilde{I}_{22} = \mathbb{E} \left[\frac{\partial \log f_{\hat{\theta}_1, \hat{\theta}_2}(y)}{\partial \theta_2} \right]^2 = I_{22}
\]

ס"כ קיבולנו כי מטריצה האינפורמציה מתונה \(\hat{\theta} \):

\[
\hat{\Sigma} = \begin{pmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} + I_0 \end{pmatrix}
\]

וסס CR גחון \(\hat{\theta} \):

\[
\text{cov} \left(\hat{\theta}, \hat{\theta} \right) \geq \begin{pmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} + I_0 \end{pmatrix}^{-1}
\]

ב. אם הקיים מ cioילר יעיל ל \(\hat{\theta} \) מتلك \(\hat{\theta} \), אז מתכרטם:

\[
\begin{bmatrix}
\frac{\partial \ln f_{\hat{\theta}_1, \hat{\theta}_2}(y)}{\partial \theta_1} \\
\frac{\partial \ln f_{\hat{\theta}_1, \hat{\theta}_2}(y)}{\partial \theta_2}
\end{bmatrix} = \begin{pmatrix} I_{11} & I_{12} \\ I_{21} & I_{22} \end{pmatrix} \begin{pmatrix} g_1(y) - \theta_1 \\ g_2(y) - \theta_2 \end{pmatrix}
\]
אם קיים משרך יעיל ל-θ_2,侠，则 מתפקיים:

$$\frac{\partial \ln f_{\theta_2}(z)}{\partial \theta_2} = I_0[h(z) - \theta_2]$$

לפי סעיף א':

$$\begin{bmatrix}
\frac{\partial \log f_{\theta_1, \theta_2}(y, z)}{\partial \theta_1} \\
\frac{\partial \log f_{\theta_1, \theta_2}(y, z)}{\partial \theta_2}
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial \log f_{\theta_1, \theta_2}(y)}{\partial \theta_1} \\
\frac{\partial \log f_{\theta_1, \theta_2}(y)}{\partial \theta_2}
\end{bmatrix} + \begin{bmatrix}
\frac{\partial \log f_{\theta_2}(z)}{\partial \theta_2}
\end{bmatrix} = \begin{bmatrix}
I_{11} & I_{12} & 0 \\
I_{21} & I_{22} & I_0
\end{bmatrix} \begin{bmatrix}
g_1(y) \\
g_2(y) \\
h(z)
\end{bmatrix} - \begin{bmatrix}
I_{11} & I_{12} \\
I_{21} & I_{22} + I_0
\end{bmatrix} \begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}$$

$$= \bar{I}^{-1} \begin{bmatrix}
I_{11} & I_{12} & 0 \\
I_{21} & I_{22} & I_0
\end{bmatrix} \begin{bmatrix}
g_1(y) \\
g_2(y) \\
h(z)
\end{bmatrix} - \begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}$$

לכל, אם ישו θ_1 ו-θ_2, יש משרך יעיל ל-θ_1 ו-θ_2, ניתן למצוא את המשרך יעיל ל-θ_1 ו-θ_2 עבור (θ_1, θ_2). זה ניתן לבדוק באמצעות

$$\bar{I}^{-1} \begin{bmatrix}
I_{11} & I_{12} & 0 \\
I_{21} & I_{22} & I_0
\end{bmatrix} \begin{bmatrix}
g_1(y) \\
g_2(y) \\
h(z)
\end{bmatrix} - \begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}$$

ב.

$$f_{\theta_2}(z_0) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y_n - \theta_2)^2}{2}\right)$$

$$f_{\theta_2}(z) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left(-\frac{1}{2} \sum_{n=1}^{N} (y_n - \theta_2)^2\right)$$

$$\ln f_{\theta_2}(z) = -\frac{N}{2} \ln(2\pi) - \frac{1}{2} \sum_{n=1}^{N} (y_n - \theta_2)^2$$

$$\frac{\partial \ln f_{\theta_2}(z)}{\partial \theta_2} = \sum_{n=1}^{N} (y_n - \theta_2) = N \left[\frac{1}{N} \sum_{n=1}^{N} y_n - \theta_2\right]$$

לכל קיים משרך יעיל ל-θ_2,侠.
\[
\begin{align*}
f_{\hat{\alpha}, \hat{\omega}}(y_n) &= \frac{1}{2\pi \sqrt{\text{det}(C)}} \exp \left\{- \frac{(y_n - \theta)^T C^{-1} (y_n - \theta)^T}{2}\right\} \\
f_{\hat{\omega}, \hat{\alpha}}(y) &= \left(\frac{1}{2\pi \sqrt{\text{det}(C)}}\right)^N \exp \left\{- \frac{\sum_{n=1}^{N} (y_n - \theta)^T C^{-1} (y_n - \theta)^T}{2}\right\} \\
f_{\hat{\omega}, \hat{\omega}}(y) &= \left(\frac{1}{2\pi \sqrt{\sigma_U^2 \sigma_V^2 - \rho^2}}\right)^N \exp \left\{- \frac{\sum_{n=1}^{N} \sigma_U^2 (y_n^1 - \theta_1)^2 - 2\rho (y_n^1 - \theta_1)(y_n^2 - \theta_2) + \sigma_V^2 (y_n^2 - \theta_2)^2}{2(\sigma_U^2 \sigma_V^2 - \rho^2)}\right\} \\
\ln f_{\hat{\omega}, \hat{\omega}}(y) &= -N \ln \left(2\pi \sqrt{\sigma_U^2 \sigma_V^2 - \rho^2}\right) - \frac{\sum_{n=1}^{N} \sigma_U^2 (y_n^1 - \theta_1)^2 - 2\rho (y_n^1 - \theta_1)(y_n^2 - \theta_2) + \sigma_V^2 (y_n^2 - \theta_2)^2}{2(\sigma_U^2 \sigma_V^2 - \rho^2)}
\end{align*}
\]

\[
\begin{bmatrix}
\frac{\partial \ln f_{\hat{\alpha}, \hat{\omega}}(y)}{\partial \theta_1} \\
\frac{\partial \ln f_{\hat{\alpha}, \hat{\omega}}(y)}{\partial \theta_2}
\end{bmatrix} = \begin{bmatrix}
\sum_{n=1}^{N} \sigma_U^2 (y_n^1 - \theta_1) - \rho (y_n^2 - \theta_2) \\
\sum_{n=1}^{N} \sigma_U^2 (y_n^2 - \theta_2) - \rho (y_n^1 - \theta_1)
\end{bmatrix} \begin{bmatrix}
\sigma_U^2 \\
\sigma_V^2
\end{bmatrix} - \frac{1}{2(\sigma_U^2 \sigma_V^2 - \rho^2)} \begin{bmatrix}
N \sigma_U^2 \\
N \sigma_V^2
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix} \begin{bmatrix}
\frac{1}{N} \sum_{n=1}^{N} y_n^1 - \theta_1 \\
\frac{1}{N} \sum_{n=1}^{N} y_n^2 - \theta_2
\end{bmatrix}
\]

\[
I = \begin{bmatrix}
\frac{N}{1 - \rho^2} & -\frac{N\rho}{1 - \rho^2} \\
-\frac{N\rho}{1 - \rho^2} & \frac{N}{1 - \rho^2}
\end{bmatrix} - \frac{1}{2(\sigma_U^2 \sigma_V^2 - \rho^2)} \begin{bmatrix}
N \sigma_U^2 \\
N \sigma_V^2
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix} \begin{bmatrix}
\frac{1}{N} \sum_{n=1}^{N} y_n^1 - \theta_1 \\
\frac{1}{N} \sum_{n=1}^{N} y_n^2 - \theta_2
\end{bmatrix}
\]

לכן ציינו את האפס \(\hat{\alpha}, \hat{\omega} \) \(\text{ماتור} \) \(\theta_1, \theta_2 \) \(\text{מתור} \) \(\hat{\alpha}, \hat{\omega} \). בخصوص \(\alpha, \omega \) \(\text{מתור} \) \(\hat{\alpha}, \hat{\omega} \) \(\text{מתור} \) \(\theta_1, \theta_2 \). בخصوص \(\alpha, \omega \) \(\text{מתור} \) \(\hat{\alpha}, \hat{\omega} \) \(\text{מתור} \) \(\theta_1, \theta_2 \). בخصوص \(\alpha, \omega \) \(\text{מתור} \) \(\hat{\alpha}, \hat{\omega} \) \(\text{מתור} \) \(\theta_1, \theta_2 \).
שאלה 3:

: \(\theta_k = a^k \theta_0 \)

\[f_o(y) = \frac{1}{(2\pi \sigma_v^2)^{N/2}} \exp \left\{ -\frac{1}{2\sigma_v^2} \sum_{k=1}^{N} (y_k - ca^k \theta_0)^2 \right\} \]

נחשב קודם את תוספת עטיה

\[\frac{\partial \ln f_o(y)}{\partial \theta_0} = \frac{1}{\sigma_v^2} \sum_{k=1}^{N} (y_k - ca^k \theta_0) ca^k \]

\[\frac{\partial^2 \ln f_o(y)}{\partial \theta_0^2} = -\frac{c^2}{\sigma_v^2} \sum_{k=1}^{N} a^{2k} = -\frac{c^2 a^2}{\sigma_v^2} \frac{1-a^{2N}}{1-a^2} \]

\[I(\theta_0) = \frac{c^2 a^2}{\sigma_v^2} \frac{1-a^{2N}}{1-a^2} \]

\[E_{\theta_0} \left(\hat{\theta}_0 - \theta_0 \right)^2 \geq \frac{\sigma_v^2}{c^2 a^2} \frac{1-a^{2N}}{1-a^2} \]

ב. חישוב התשובה ניסיון מרבי. מ- (1) נקבל:

\[\frac{1}{\sigma_v^2} \sum_{k=1}^{N} (y_k - ca^k \theta_0) ca^k = 0 \]

\[\Rightarrow \hat{\theta}_0^{(ML)} c \sum_{k=1}^{N} a^{2k} = \sum_{k=1}^{N} a^k y_k \]

\[\Rightarrow \hat{\theta}_0^{(ML)} c a^2 \frac{1-a^{2N}}{1-a^2} = \sum_{k=1}^{N} a^k y_k \]

\[\Rightarrow \hat{\theta}_0^{(ML)} = \frac{1-a^2}{c a^2 (1-a^{2N})} \sum_{k=1}^{N} a^k y_k \]

ולכן המשערית איננה מגונה.

א. נехש משערית סבירות מרבי. מ- (1) נקבל:

\[E_{\theta_0} \left(\hat{\theta}_0 - \theta_0 \right)^2 \geq \frac{\sigma_v^2}{c^2 a^2} \frac{1-a^{2N}}{1-a^2} \]
The equation for bias variance is:

$$E_{\theta_0} \left(\hat{\theta}^{(N)}_{0, ML} - \theta_0 \right)^2 = E \left(\lambda \sum_{k=1}^{N} a_k^2 y_k - \theta_0 \right)^2$$

$$= E \left(\lambda \sum_{k=1}^{N} (ca^2 \theta_0 + a^2 v_k) - \theta_0 \right)^2$$

$$= E \left(\lambda c \sum_{k=1}^{N} a^2 \theta_0 - \theta_0 + \lambda \sum_{k=1}^{N} a^2 v_k \right)^2$$

$$= E \left(\lambda c \theta_0 a^2 \frac{1-a^2}{1-a^2} - \theta_0 + \lambda \sum_{k=1}^{N} a^2 v_k \right)^2$$

$$= E \left(\lambda \sum_{k=1}^{N} a^2 v_k \right)^2$$

$$= \lambda^2 E \left(\sum_{k=1}^{N} \sum_{l=1}^{N} a^2 v_k v_l \right)$$

$$= \lambda^2 \sum_{k=1}^{N} a^2 \sigma_v^2$$

$$= \sigma_v^2 \frac{1-a^2}{c^2 a^2 (1-a^2)}$$

As a consequence of the previous results, the bias of $$\hat{\theta}^{(N)}_{0, ML}$$ is not bounded.

In fact, as observed in Section 2, the bias of the estimator $$\hat{\theta}^{(N)}_{0, ML}$$ is unbounded as $$N \to \infty$$.

$$\lim_{N \to \infty} E_{\theta_0} \left(\hat{\theta}^{(N)}_{0, ML} - \theta_0 \right)^2 = \frac{\sigma_v^2}{c^2 a^2} (1-a^2) \quad (|a| < 1)$$

In conclusion, the Kalman filter is a useful tool for estimating the parameters of a linear system. The Kalman filter is given by:

$$\hat{\theta}_{n+1|n} = a \hat{\theta}_{n|n-1} + a K(n) \left(y(n) - c \hat{\theta}_{n|n-1} \right) \quad (2)$$

where

$$K(n) = \frac{P(n|n-1) C^T}{CP(n|n-1) C^T + \sigma_v^2}$$

and

$$P(n+1|n) = a^2 P(n|n-1) - \frac{a^2 c^2 P^2(n|n-1)}{c^2 P(n|n-1) + \sigma_v^2} \quad (3)$$
משואת (2) הבינה השערת

\[\theta_{n+1} = a^{n+1} \theta_0 \]

והיון ש

\[\theta_{0|n} = a^{-(n+1)} \theta_{n+1|n} \]

וא"ו, שימשו ב(2):

\[a^{n+1} \hat{\theta}_{0|n} = a \cdot a^n \hat{\theta}_{0|n-1} + aK(n)(Y(n) - \sigma a^n \hat{\theta}_{0|n-1}) \]

\[\hat{\theta}_{0|n} = \hat{\theta}_{0|n-1} + K(n)(a^n Y(n) - \sigma \hat{\theta}_{0|n-1}) \]

הנחנו שגילוי השערת של

\[P(n+1|n) \]

שהווה ושקול ב(3) שים לב ש-

\[\theta_n = a^n \theta_0 \]

רגע N. מתייחס, מהיון ש

\[P(0+n|n) = a^{2(n+1)} P(0|n) \]

כשראור N. שגילוי שערת בשערת \n
\[P(0+n|n) \]

שהווה ושקול ב(3) (3) ונקב:

\[a^{2(n+1)} P(0|n) = a^2 \cdot a^{2n} P(0|n-1) - \frac{a^2 c^2 a^{4n} P^2(0|n-1)}{c^2 a^{2n} P(0|n-1) + \sigma^2} \]

\[P(0|n) = P(0|n-1) - \frac{c^2 a^{2n} P^2(0|n-1)}{c^2 a^{2n} P(0|n-1) + \sigma^2} \]