CAD of VLSI

Tutorial #6

Binary Decision Diagrams

BDDs

- How to Represent functions using BDD’s
- Unique Table
- How to Build Reduced Ordered BDDs
- How to Build Complement Edge BDDs
Binary Decision Diagram

Introduction: draw an ordered **BDD** for the following truth table:

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ordered BDD (OBDD):
The variables in all paths always appear in the same order $x_1 < x_2 < x_3$
Introduction: draw an ordered BDD for the following truth table:

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ordered BDD (OBDD):
The variables in all paths always appear in the same order $x_1 < x_2 < x_3$
Reduced OBDD - ROBDD

Example: Reduce the BDD given on the previous slide.

Step 1: Duplicate terminal removal

![Diagram of BDD reduction](image)
Reduced OBDD - ROBDD

Example: Reduce the bdd given on the previous slide.

Step 1: Duplicate terminal removal
Reduced OBDD - ROBDD

Example: Reduce the bdd given on the previous slide.

Step 2: Duplicate non-terminal removal
Reduced OBDD - ROBDD

Example: Reduce the bdd given on the previous slide.

Step 2: Duplicate non-terminal removal
Reduced OBDD - ROBDD

Example: Reduce the bdd given on the previous slide.

Step 3: Redundant test removal
Reduced OBDD - ROBDD

Example: Reduce the bdd given on the previous slide.

Step 3: Redundant test removal
Storing BDDs

Shared BDDs:
BDD structures can be shared by different functions.

Example:
\(f = abc \) \((g=bc, \ h=c) \)

The bdd for \(F \) can be created as a multi-rooted bdd.
Once the bdds of \(C \) and \(BC \) have been computed, pointers to these structures (\(C \) and \(BC \)) can be used to create the bdd for \(F \).
The Unique Table (UT)

Unique Table:
- A data base storing pointers to all the subgraphs of the BDD.
- The table is unique - there is a single pointer to each node.
- The purpose of the unique table is to avoid redundancies in the multi-rooted BDDs.
- The main Idea is to check for existing nodes before adding.
- The key to the table:
 - The key is a description of the node:
 - (v,H,L) where “v” is the decision variable,
 - “H” and “L” are it’s two sons - subgraphs.

<table>
<thead>
<tr>
<th>Function</th>
<th>Key</th>
<th>Node Ptr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v</td>
<td>H</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C:</td>
<td>c</td>
<td>0x01</td>
</tr>
<tr>
<td>BC:</td>
<td>b</td>
<td>0x03</td>
</tr>
<tr>
<td>ABC:</td>
<td>a</td>
<td>0x04</td>
</tr>
</tbody>
</table>
Building BDDs - *wrong way*

Exercise: Build a ROBDD for the following function: \(f = a'b + ac \)

Intuitive solution:

1) Work bottom up,
 Build Primitives:

2) Build (simple) implicants:
 Remark: what about large implicants?

3) Join the implicants???
 Not reduced, nor unique !!!

Recall the **Shannon expansion**, how it applies to BDDS ?
The Shannon Expansion

Shannon’s expansion: \(f = a f_a + a' f_a \),

The BDD represents recursive application of Shannon’s expansion!

Decomposing the function (co-factoring)
Creates subgraphs that are unique (unless it already exists), and are used in building the function.
Build BDD - Algorithm

Build_BDD (F)
{
 If (terminal = Terminal_Case(F))
 {
 return terminal; }
 else
 {
 v = Top_Variable(F); // Assumes global variable order
 F_v = Co_Factor(F , v);
 F_v` = Co_Factor(F , v`);
 HSON = Build_BDD (F_v); // recursive call
 LSON = Build_BDD (F_v`); // recursive call
 return Unique_Table(v , HSON , LSON);
 }
}
Build BDD - functions

Unique_Table(v , HSON , LSON)
{
 If (HSON == LSON)
 { return HSON; }
else if (node = Unique_Table_Exists (v , HSON , LSON))
 { return node; }
else
{
 new_node = Unique_Table_Insert (v , HSON , LSON);
 return new_node;
}
}

Terminal_Case(F)
{
 if (F == ‘0’) { return BDD(‘0’); }
else if (F == ‘1’) { return BDD(‘1’); }
else { return NON_TERMINAL; }
}
More Terminal Cases

• If we find at some point during our recursive process that \(f_{ab'c} = d \) (not a Terminal_Case) we will continue to cofactor it further to \(f_{ab'cd} = 1 \) and \(f_{ab'cd'} = 0 \) which are both terminal cases.

• However, building a BDD-Key for \(f_{ab'c} = d \) (or even \(g = d' \)) is very easy:

• So we can from now on say that any function which is equal to a literal (such as \(a \) or \(b, c, \ldots \)) or even a negated one (\(a' \) or \(b', \ldots \)) is also a Terminal_Case.

• Actually even functions like \(p = a + b \) or \(q = cd \) can be also easily built and said to be terminal cases too.
Exercise 1

Exercise: Build a shared ROBDD for the following functions:

A) \(f = (a + b) \cdot c + d \)
B) \(g = ac' + d \)
C) \(h = f + g \)

- We will use the Build_BDD algorithm
- The variable ordering is: \(a < b < c < d \) , \((a) is the top\).
- Computation is always “bottom up”.
 First compute \(f \) and \(g \) and then “\(f \text{ op } g \)”
 Recall that: \(f \text{ op } g = x(f_x \text{ op } g_x) + x'(f_x \cdot \text{ op } g_x) \)
Exercise 1-A

- We begin with an empty Unique_Table:
 For our convenience we add two more columns (for humans only).

<table>
<thead>
<tr>
<th>Boolean exp’</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- We recall our algorithm:

- We begin with our function:
 \[f = (a + b) \cdot c + d \]
 (performing Build_BDD \((f)\))

- Obviously \(f\) is not a Terminal_Case so we break it into cofactors \(f_a, f_a'\):
 \[f_a = c + d; \quad f_a' = bc + d \]
- and enter recursively to compute \(f_a\).
Build_BDD (F) { // F= f_a = c + d
 If (terminal = Terminal_Case(F)) {
 return terminal;
 } else {
 v = Top_Variable(F); // v=b
 F_v = Co_Factor(F , v); // F_v = f_v = c + d
 F_v = Co_Factor(F , v'); // F_v = f_v = b + c + d
 HSON = Build_BDD (F_v);
 LSON = Build_BDD (F_v);
 return Unique_Table(v , HSON , LSON);
 } }

Exercise 1-A (cont’)

(performing Build_BDD (f_a))

• Obviously f_a = c + d is also not a Terminal_Case so the recursion continues to f_ab = c + d ; f_ab' = c + d.
 (performing Build_BDD (f_ab))

• f_ab; f_ab’ are also not Terminal_Cases by themselves, so we continue and finally reach : f_abc = 1; f_abc' = d

• While f_abc = 1 is Terminal_Case, f_abc’ = d is not but it is trivial to (perform Build_BDD (f_abc’)) (which returns 0x01)

• For this expanded Terminal_Case the Key is simply: {d, 1, 0}

<table>
<thead>
<tr>
<th>Boolean exp’</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d; f_abc’</td>
<td>0x001</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Exercise 1-A (cont')

(performing Build_BDD (f_{ab'}))

- Now that we have finished with all of the recursion tree under \(f_{ab}=c+d \), and we know that \(v=c \), HSON=1, LSON=0x01 we can build another BDD part with Key={c, 1, 0x01} (returns 0x002)

- Having finished with Build_BDD (f_{ab}) the next step is (performing Build_BDD (f_{ab'}))

- But because \(f_{ab'}=c+d \) exactly equals \(f_{ab}=c+d \) for which the relevant BDD part was already built it returns the same pointer LSON=HSON=0x02.

- Humans can add another Label to 0x02:

<table>
<thead>
<tr>
<th>Boolean exp'</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(d; f_{abc'})</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(c+d)</td>
<td>(f_{ab}; f_{ab'})</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
</tbody>
</table>
Exercise 1-A (cont’)

(performing Build_BDD (f_a))

• Having finished with Build_BDD (f_ab') the next step is calling Unique_Table from within the recursion hierarchy level of Build_BDD (f_a).

• Because we in the case of HSON==LSON nothing is need to be done except returning HSON=0x02. That is again no new line in the Unique_Table is needed, one can only add additional label to the line 0x02.

<table>
<thead>
<tr>
<th>Bool’ exp’</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d; f_{ab}c'</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c+d</td>
<td>f_a; f_{ab}; f_{ab}'</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
</tbody>
</table>
Exercise 1-A (cont’)

(performing Build_BDD (f))

• We return to the top recursion hierarchy of f itself. We have finished with all of the recursion tree under $f_a = c + d$, and we know that $v = a$ and HSON=0x02. (& we know $f_a = c + d; f_a' = bc + d$)

• It is now time to compute LSON by further recursion:

(performing Build_BDD (f_a'))

• After cofactoring of f_a' w.r.t. $v = b$ we find that $f_a'b = c + d$ and $f_a'b' = d$ both of which were calculated before, so their HSON and LSON are already known: HSON=0x02, LSON=0x01.

• Humans can add more labels.

<table>
<thead>
<tr>
<th>Bool’ exp’</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>$d; f_{abc}; f_{a'b'}$</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$c+d$</td>
<td>$f_a; f_{ab}; f_{ab'}; f_{a'b}$</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
</tbody>
</table>

Build_BDD (F) { // F= $f = (a + b) \cdot c + d$
 If (terminal = Terminal_Case(F)) { return terminal;
} else {
 v = Top_Variable(F); // v=a
 F_v = Co_Factor(F , v); // F_v = f_a = c+d
 F_v = Co_Factor(F , v'); // F_v = f_a' = bc+d
 HSON = Build_BDD (F_v);
 LSON = Build_BDD (F_v);
 return Unique_Table(v , HSON , LSON);
} }
Exercise 1-A (cont’)

(performing `Build_BDD(f_a')`)

- The next step is to call `Unique_Table` from within the recursion hierarchy level of `Build_BDD(f_a')`, where v=b and HSON=0x02, LSON=0x01.
- This creates a new Key entry in the `Unique_Table` \{b,0x02,0x01\}:
- Humans can add the label f_a' to this newly created line 0x03.

<table>
<thead>
<tr>
<th>Bool' exp'</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d; f_{abc}; $f_{a'b}$</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c+d</td>
<td>f_a; f_{ab}; $f_{ab'}$; $f_{a'b}$</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>bc+d</td>
<td>f_a'</td>
<td>0x03</td>
<td>b</td>
<td>0x02</td>
<td>0x01</td>
</tr>
</tbody>
</table>
Humans can draw the BDD represented in the Unique_Table: `Simple` or `Elaborated` →

<table>
<thead>
<tr>
<th>Bool' exp'</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d; f_{abc}'; f_{a'b'}</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c+d</td>
<td>f_a; f_{ab}; f_{ab'}; f_{a'b}</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>bc+d</td>
<td>f_a'</td>
<td>0x03</td>
<td>b</td>
<td>0x02</td>
<td>0x01</td>
</tr>
<tr>
<td>(a+b)c+d</td>
<td>f</td>
<td>0x04</td>
<td>a</td>
<td>0x02</td>
<td>0x03</td>
</tr>
</tbody>
</table>
Exercise 1-B

(performing Build_BDD (g))

• Now we need to build the BDD for the function \(g = ac' + d \).
• Obviously \(g \) is not a Terminal_Case so we break it into coffactors \(g_a, g_a' : \ g_a=c'+d \; \; g_a'=d \)
• and enter recursively to compute \(g_a \).

(performing Build_BDD (g_a))

• As \(g_a \) doesn’t depend on \(b \) the recursion would yield the same for \(g_a=g_{ab}=g_{ab}' \), so we (perform Build_BDD (g_{ab}))

<table>
<thead>
<tr>
<th>Bool’ exp’</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(d; f_{abc}; f_{a'b})</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(c+d)</td>
<td>(f_a; f_{ab}; f_{ab'}; f_{a'b})</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>(bc+d)</td>
<td>(f_a')</td>
<td>0x03</td>
<td>b</td>
<td>0x02</td>
<td>0x01</td>
</tr>
<tr>
<td>((a+b)c+d)</td>
<td>(f)</td>
<td>0x04</td>
<td>a</td>
<td>0x02</td>
<td>0x03</td>
</tr>
</tbody>
</table>
Build_BDD (F) { // F= g_{ab} = c' + d
 If (terminal = Terminal_Case(F)) {
 return terminal;
 } else {
 v = Top_Variable(F); // v=c
 F_v = Co_Factor(F , v); // F_v = g_{abc} = d
 F_{v'} = Co_Factor(F , v'); // F_{v'} = g_{abc'} = 1
 HSON = Build_BDD (F_v);
 LSON = Build_BDD (F_{v'});
 return Unique_Table(v , HSON , LSON);
 }
}

Exercise 1-B (cont’)

(performing Build_BDD (g_{ab}.))

- As $g_{ab} = c' + d$ and is not a Terminal_Case we break it into cofactors and find $g_{abc} = d$; $g_{abc'} = 1$ which are already computed and a Terminal_Case respectively, i.e. we found that HSON=0x01 and LSON=1. With v=c, the new Key={c,0x01,1}:
- Humans make labels and make a shortcut to g_a:

<table>
<thead>
<tr>
<th>Bool’ exp’</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>$d; f_{abc'}; f_{a'b'}$</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c+d</td>
<td>$f_a; f_{ab}; f_{ab'}; f_{a'b}$</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>bc+d</td>
<td>f_a'</td>
<td>0x03</td>
<td>b</td>
<td>0x02</td>
<td>0x01</td>
</tr>
<tr>
<td>(a+b)c+d</td>
<td>f</td>
<td>0x04</td>
<td>a</td>
<td>0x02</td>
<td>0x03</td>
</tr>
<tr>
<td>c’+d</td>
<td>$g_a; g_{ab}; g_{ab'}$</td>
<td>0x05</td>
<td>c</td>
<td>0x01</td>
<td>1</td>
</tr>
</tbody>
</table>
Exercise 1-B (cont’)

(performing `Build_BDD(g)`)

- We now finished with all the recursion sub-tree on the \(g_a\) side.
- We are back to the recursion level of `Build_BDD(g)` and now is
 the time to compute LSON but as we found earlier that \(g_a' = d\) it
 is clear that LSON=0x01 (another human label added).
- Currently \(v=a\) so the call to `Unique_Table` creates a new entry
 with the Key:

```plaintext
{ a, 0x05, 0x01 }
```

<table>
<thead>
<tr>
<th><code>Bool’ exp’</code></th>
<th><code>Label(s)</code></th>
<th>ID</th>
<th><code>v</code></th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(d; f_{abc}; f_{a'b'}; g_a')</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(c+d)</td>
<td>(f_a; f_{ab}; f_{ab'}; f_{a'b})</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>(bc+d)</td>
<td>(f_a')</td>
<td>0x03</td>
<td>b</td>
<td>0x02</td>
<td>0x01</td>
</tr>
<tr>
<td>((a+b)c+d)</td>
<td>(f)</td>
<td>0x04</td>
<td>a</td>
<td>0x02</td>
<td>0x03</td>
</tr>
<tr>
<td>(c'+d)</td>
<td>(g_a; g_{ab}; g_{ab'})</td>
<td>0x05</td>
<td>c</td>
<td>0x01</td>
<td>1</td>
</tr>
<tr>
<td>(ac'+d)</td>
<td>(g)</td>
<td>0x06</td>
<td>a</td>
<td>0x05</td>
<td>0x01</td>
</tr>
</tbody>
</table>
Exercise 1-B (cont’)

Humans can draw the BDD represented in the Unique_Table:

Simple or Elaborated

<table>
<thead>
<tr>
<th>Bool’ exp’</th>
<th>Label(s)</th>
<th>ID</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>d; f_{abc}; f_{a’b’}; g_{a’}</td>
<td>0x01</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c+d</td>
<td>f_{a}; f_{ab}; f_{ab’}; f_{a’b}</td>
<td>0x02</td>
<td>c</td>
<td>1</td>
<td>0x01</td>
</tr>
<tr>
<td>bc+d</td>
<td>f_{a’}</td>
<td>0x03</td>
<td>b</td>
<td>0x02</td>
<td>0x01</td>
</tr>
<tr>
<td>(a+b)c+d</td>
<td>f</td>
<td>0x04</td>
<td>a</td>
<td>0x02</td>
<td>0x03</td>
</tr>
<tr>
<td>c’+d</td>
<td>g_{a}; g_{ab}; g_{ab’}</td>
<td>0x05</td>
<td>c</td>
<td>0x01</td>
<td>1</td>
</tr>
<tr>
<td>ac’+d</td>
<td>g</td>
<td>0x06</td>
<td>a</td>
<td>0x05</td>
<td>0x01</td>
</tr>
</tbody>
</table>
Exercise 1-C

The function is: \(h = f + g \)

First we’ll decompose \(h \) (some of functions):

\[
\begin{align*}
 h &= a(f_a + g_a) + a'(f'_a + g'_a) \\
 h_a &= f_a + g_a = c + d + c' + d = 1 \\
 h_a' &= f_a' + g_a' = b \cdot c + d + d = b \cdot c + d = f_a'.
\end{align*}
\]

Meaning we already have the sums in the unique table.

We have to build the new node:
Exercise 1-C (h)

Build bdd and **UT** entry for: $h = f + g$

Simple BDD add cofactors:

<table>
<thead>
<tr>
<th>Label</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f_{ab}</td>
<td>c</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>f_{a'}</td>
<td>b</td>
<td>f_{ab}</td>
<td>D</td>
</tr>
<tr>
<td>f</td>
<td>a</td>
<td>f_{ab}</td>
<td>f_{a'}</td>
</tr>
<tr>
<td>g_{ab}</td>
<td>c</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>g</td>
<td>a</td>
<td>g_{ab}</td>
<td>D</td>
</tr>
<tr>
<td>h</td>
<td>a</td>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>
Exercise 1-C (h)

Build bdd and UT entry for: \(h = f + g \)

Simple BDD add cofactors:

<table>
<thead>
<tr>
<th>Label</th>
<th>v</th>
<th>Hson</th>
<th>Lson</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(f_{ab})</td>
<td>c</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>(f_{a^c})</td>
<td>b</td>
<td>(f_{ab})</td>
<td>D</td>
</tr>
<tr>
<td>(f)</td>
<td>a</td>
<td>(f_{ab})</td>
<td>(f_{a^c})</td>
</tr>
<tr>
<td>(g_{ab})</td>
<td>c</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>(g)</td>
<td>a</td>
<td>(g_{ab})</td>
<td>D</td>
</tr>
<tr>
<td>(h)</td>
<td>a</td>
<td>1</td>
<td>(f_{a^c})</td>
</tr>
</tbody>
</table>

Partial BDD:
ROBDD with Complement Edges

Consider the two following BDDs:

- These are two different BDDs.
- There is no need to store them both!
- We can store just one, with a polarity value.
- BDD building recursion can be stopped if F' is found (not only if F is found).
• The **dot** notation:
• The **dot** means: “invert the final result you get”.
• The **dot** can be only on “**else**” edge to keep the BDD canonical.
• Using complement edges reduces the number of BDDs, but increases the data and work on the remaining BDDs.
• Not very intuitive - hard to draw and read.
Exercise: Build ROBDD with Complement Edges

\[f = \text{abcd}' + \text{ab'd} + \text{a'c} + \text{a'c'd} \]
Exercise: Build ROBDD with Complement Edges

\[f = abd' + ab'd + a'c + a'c'd \]
Exercise: Build ROBDD with Complement Edges

\[f = abd' + ab'd + a'c + a'c'd \]
Exercice: Build ROBDD with Complement Edges

\[f = abd' + ab'd + a'c + a'c'd \]
Exercise: Build ROBDD with Complement Edges

\[f = abd' + ab'd + a'c + a'c'd \]
Exercise: Build ROBDD with Complement Edges

\[f = abd' + ab'd + a'c + a'c'd \]

Try to manually verify the final BDD…