תרגיל בית מס' 3

שאלה 1

נתונה סדרה \(x[n] \) באורך \(N \), והתמרת ה-DFT \(X^d[k] \) שלה \(N \)-בריז. התמציאו \(X^d[k] \) \(2N \)-בריז, \(z[n] \) \(2N \)-בריז, \(y[n] \) \(N \)-בריז, \(X^d[k] \) \(Z^d[k] \)-DFT \(n \). \(Z^d[k] \) \(Z^d[k] \) \(2N \)-בריז, \(X^d[k] \) \(Z^d[k] \)-DFT \(n \). \(Z^d[k] \) \(Z^d[k] \) \(2N \)-בריז.

שאלה 2

אות בזמן רציף \(y(t) = \cos(2\pi f_at) \) \(T_a = 0.01 \). \(f_a > 50Hz \) \(f_a < 100Hz \). \(N \) \(M \). \(X^d[k] \) \(|X^d[k]| \) \(X^d[k] \) \(2 \)-FFT \(x[n] \) \(x[n] \) \(0 \) \(k \). \(k=12 \).
א. מה מספר הדגימות בתו载体 על היפרפונטvelop אפסים\(M \)اورחרי היפרפונטvelop אפסים\(N \).getEnd of the sentence

ב. שונים מקום מתוחכם (ב-\(y[n] \)) \(n = 0,1,\ldots, N-1 \).��רה של התו载体 המקוררי בולטים \(k = 0, 1, \ldots, 10 \).

ג. סיקשב של התו载体 המקוררי בולטים \(|Y^d[k]| \) גולש את האינדקסים הנמוכים בולטים \(1,0 \).

שאלה 3

נתונים אות בזמן רציף מחזורי \(x(t) \) עם מחזור בסיסי \(T_0 \) ניתן לרישום כטור פורייה באופן הבא \(\sum_{k=-\infty}^{\infty} a[k] e^{jk\omega_0 t} \), כאשר \(\omega_0 = \frac{2\pi}{T_0} \).

(1) מהו הערך המינימלי של \(N \) \(\text{וזה גם מספר הדגימות וגם היחס בין } T_0 \) \(\text{ל } sT \)?

(2) עבור ערך זה של \(N \), ורשה יוני מופרה צבע שחרור מושלם של המקדמים \(a[k] \).

ב. על מנת לבצע את חישוב המקדמים \(a[k] \) בצופן \(\text{בטר} \) \(N \) \(\text{או מספר הדגימות וסמח ב-} \), ישאירחש שוחר

(1) \(x[n] \) \(\text{מתוך} \) \(x(t) \) \(\text{מדגימת } N \) \(\text{או} \) \(\frac{T_0}{N} \) \(\text{מתוך} \) \(x(t) \).

(2) \(X^F(\omega) = 0, \forall \omega: |\omega| > M\omega_0, \text{כלומר } [-M\omega_0, M\omega_0] \).

ב. דוגמים את \(x[n] \) \(\text{במרווח דגימה} \(sT \) \(\text{ונאספים} \) \(N \) \(\text{דגימות} \):

\[\{x[n]\}_{n=0}^{N-1} \] \(\text{(Graphics}\) \(k \) \(\text{DFT} \) \(\{x[n]\} \).

א. עוגן על帡ופיס התבסיס:

(1) \(\text{מותשל של} \) \(x(t) \) \(\text{מתוך} \) \(N \) \(\text{או} \) \(T_s \) \(\text{של} \) \(T_0 \) \(\text{(that we make the subscripts and indexes of} \) \(x(t) \) \(\text{as a function of} \).

(2) \(\text{עוצר עד} \) \(\omega_0 \) \(\text{של} \), \(N \) \(\text{රווז ביטוי מפורש עבור שחרור מוטשל של המקדמים} \(a[k] \).

ב. \(\{Y^d[k]\}_{k=0}^{N-1} \text{מתוך} \) \(\{X[d][k]\}_{k=0}^{N-1} \text{מתוך} \) \(\{a[k]\}_{k=-M}^{M} \text{ברצון של} \) \(a[k] \) \(\text{ברצון} \) \(N + L \) \(\text{כי לטוחי המסה ממולא} \) \(x[n] \) \(\text{סמס התו载体 המקוררי ב-} \).

לתחום של \(Y^d[k] \) \(\text{של} \) \(N + L \) \(\text{יועדו מסתמשים באלגוריתם \(\text{של ה-}\) DFT-2 FFT-ה \(\text{של} \) \(N + L \) \(\text{של} \) \(\text{שהו} \) \(\text{ולא מספר התו载体 המקוררי ב-} \).

(2) \(a[k]\) \(\text{מתוך} \) \(\{Y^d[k]\}_{k=0}^{N+L-1} \text{מתוך} \) \(\{Y^d[k]\}_{k=0}^{N+L-1} \text{מתוך} \) \(\{a[k]\}_{k=-M}^{M} \text{ברצון} \)

d. \(\text{אנו יוצרים שכבה משחרור מוטשל של המקדמים} \ \text{אנו גם שבח שכבה משחרור בצפיפות את} \)

א. \(\text{כרכו ביטוי מפורש עבור אופק השחרור. \(\text{גתות, \(\text{חתוך באופק.uk} \) \(\text{מדועד הבר} \) \(\text{애프יר.} \)} \)

3
שאלה 4

נתונים אותות סיבתיים בזמן בדיד \(\{x[n], y[n]\} \) סדרי בלתי אוליגגים התוכן האורגני.

בדיד \(\{x[n]\} \) \(\{y[n]\} \) על ידי:

\[
z[n] = IDFT_N \{DFT_N \{x[n]\} \cdot DFT_N \{y[n]\}\}, \quad n = 0, 1, \ldots, N - 1
\]

גדרי את האות \(\tilde{x}[n] \) התמרת מהוויות של \(x[n] \) לכל \(n \) שבל

נשתנהيفי את האות \(x[n] \) בפונקפicias \(\sum_{k=0}^{N-1} a_k \cdot e^{j2\pi nk/N} \) הנܚאוש \(a_k \) המקדםטור פורייה של האות \(x[n] \).

. \(y[n] \) \(\tilde{x}[n] \) \(u[n] = \{\tilde{x}[n]*y[n]\} \) \(\text{א. טסם ב ב. בנט את \(u[n] \) כספק丽江 של \(\tilde{x}[n] \) \(y[n]\) \(\text{냅 הערה: \(y[n]\) מחוץ לתמך \(n = 0, \ldots, N - 1 \) יתחום לימין \(\text{ופנין} \).}

. \(\tilde{x}'(\theta) = DTFT\{\tilde{x}[n]\} \) \(X^L[k] = DFT_N \{x[n]\} \) \(\text{נסמך ב. הראה כי מתקיים:}

\[
a_k = \frac{1}{N} X^L[k]
\]

. \(\text{הנ אינה כי מאופים ב.}

. \(\tilde{x}'(\theta) = \frac{2\pi}{N} \sum_{k=0}^{L-1} X^L[k] \delta\left(\theta - \frac{2\pi}{L} k \right), \quad 0 \leq \theta \leq 2\pi
\]

. \(\tilde{x}[n] = \begin{cases} x[n] & 0 \leq n \leq N - 1 \\ 0 & N \leq n \leq L - 1 \end{cases}, \quad 0 \leq n \leq L - 1
\]

. \(\tilde{x}'_L[k] = DFT_L \{\tilde{x}[n]\} \) \(\text{נסמך ה.}

. \(\tilde{x}'(\theta) = \frac{2\pi}{L} \sum_{k=0}^{L-1} \tilde{x}'_L[k] \delta\left(\theta - \frac{2\pi}{L} k \right)
\]